lunes, 5 de diciembre de 2016

Refinación y moldeo de ánodos

El cobre blíster obtenido de la etapa de conversión aún contiene impurezas y materiales valiosos tales como plata, oro, arsénico, antimonio, bismuto y hierro, por lo que debe ser refinado en los hornos anódicos. La operación de los hornos de refinación es cíclica (batch) y está constituida por las siguientes etapas: Llenado, Oxidación, Escoriado, Reducción y Vaciado.
Cada horno opera de forma secuencial, de acuerdo con las cinco etapas mencionadas. Completada la carga del horno, se inicia la etapa de oxidación, que permite remover el sulfuro contenido en el blíster hasta un nivel de 50 ppm. Para tal efecto se inyecta al baño fundido aire enriquecido con oxígeno. Adicionalmente se renuevan otras impurezas contenidas en el cobre blíster, inyectándose vía toberas, si es necesario, pequeñas cantidades de cal, que permiten la formación de una escoria que se descarta por sangrado y posteriormente es recirculado
Una vez limpio el cobre, se inicia la etapa de reducción del nivel de oxígeno presente en el baño fundido, mediante la inyección de gas natural fraccionado con vapor de aire. Así se obtiene cobre anódico con un contenido de cobre de un 99,6%.
El cobre anódico se extrae del horno de ánodos por una canaleta cubierta, a la rueda de moldeo que va girando, produciéndose la soldificación del ánodo fundido por contacto con el aire ambiente.
Un equipo especialmente diseñado, toma automáticamente los ánodos solidificándolos y los deposita en estanques longitudinales de enfriamiento con agua. Desde los estanques, los ánodos son sacados por un montacargas y depositados en un área dedicada.

Limpieza de escorias

La escoria fundida producida por el HF es alimentada al HELE por la gravedad a través de una canaleta cerrada y ventilada. La reducción del contenido de Fe3O44 permite mejorar las propiedades fisicoquímicas de la escoria optimizándose la separación y, en consecuencia, la sedimentación de las partículas de cobre. Así se logra la separación de las dos fases fundidas presentes: metal blanco con un contenido de cobre de 70% y escoria descartable con un contenido de cobre de alrededor de 0.70%. Los gases generados en el HELE son captados y conducidos a un incinerador que permite asegurar la quema total del carbón remanente no utilizado. Posteriormente, son mezclados con aire del sistema de ventilación del horno y con los gases secundarios de proceso. Esta mezcla es enfriada y conducida a un sistema de limpieza que permite la recuperación de material particulado. Los gases además de limpiados son neutralizados previo a su emisión a la atmósfera.


Fusión de concentrados

El objetivo de esta etapa es formar una fase de sulfuros líquidos, compuesta principalmente por calcosina (Cu2S), covelina (CuS), calcopirita (CuFeS2), pirita (FeS2) y bornita (Cu5FeS4). En lo posible, debe contener todo el cobre alimentado, y otra fase oxidada líquida adherida a la anterior, llamada escoria, ojalá exenta de cobre, compuesta principalmente de silicatos de hierro. Los silicatos de hierro y los fundentes forman la escoria. La mata de cobre contiene sulfuros de cobre y hierro, algunos metales preciosos y otros elementos a nivel de trazas. La escoria, pobre en el metal, es caracterizada y descartada directamente o sometida a una etapa adicional de recuperación del metal, si su contenido es alto. La mata, en cambio, pasa a una etapa posterior de conversión por oxidación.
Los concentrados sulfurados de cobre son básicamente combinaciones, en proporciones variables, de sulfuros de hierro y cobre mezclados con ganga silícea ácido o básica. Las reacciones que tienen lugar en el Horno de Fusión (HF) transcurren entre estos constituyentes del concentrado y los fundentes, y corresponden principalmente a la reducción de los óxidos de cobre por el sulfuro cuproso y a la sulfuración de los óxidos de cobre por el sulfuro ferroso. Todo el sulfuro de cobre se descompone de acuerdo con las siguientes reacciones:




La tecnología HF corresponde a un proceso de fusión-conversión continua de concentrados, desarrollado por Outokumpu, que aprovecha el calor generado en las reacciones del oxígeno presente en el aire del proceso, con los sulfuros de hierro contenidos en el concentrado alimentado al reactor. Dependiendo principalmente de las características mineralógicas o químicas del concentrado, de los flujos y enriquecimientos en oxígeno del aire soplado, se generarán importantes cantidades de calor en el reactor, suficientes para tener un proceso totalmente autógeno, donde se funden además, materiales fríos de recirculación con cobre o carga fría, generada en el proceso productivo y utilizada para regular la temperatura en el horno.
Los productos generados en este proceso son una fase rica en cobre, conocida como eje de alta ley, con un 62%-70% de cobre, una escoria con un 1%-2% de cobre y 8%-12% de Fe3O4, y una corriente continua de gases con un 30%-35% de SO2 en la salida del horno. Concentración que dependerá principalmente del enriquecimiento en oxígeno del aire de proceso.
La escoria generada en el HF es evacuada por un pasaje de sangría ubicado en el extremo opuesto al punto de extracción del metal blanco, transferida por gravedad a través de una canaleta inclinada, cerrada, refrigerada y recubierta por material refractario, a un Horno Eléctrico de Limpieza de Escoria (en adelante HELE) para recuperar su contenido de cobre. Ambas canaletas, tanto la que conduce la escoria al HELE, como la que conduce el metal blanco a la etapa de granallado, se encuentran totalmente confinadas de tal forma que los gases y vahos emanados por la extracción o sangrado de los productos (metal blanco y escoria), sean captados y conducidos mediante ventilación a un sistema de limpieza de gases secundarios, donde un filtro de mangas recupera las partículas en suspensión (las que luego son recirculadas como carga fría al HF). Luego, los gases y vahos son neutralizados y emitidos a la atmósfera.
Respecto de los gases metalúrgicos primarios producidos en el proceso (ricos en SO2), éstos salen del HF por una torre refrigerada y pasan a una caldera donde se enfrían hasta alcanzar una temperatura de 350 ºC. Transfieren su calor por radiación y convección a los tubos de la caldera para producir vapor saturado de 60 bar de presión, que se utiliza en múltiples aplicaciones como un medio calefactor en procesos de intercambio de calor. Los gases primarios, limpios en partículas y ricos en SO22, son forzados por un ventilador de tiro inducido y conducido a la Planta de Limpieza de Gases y el dióxido de azufre es utilizado en la producción de ácido sulfúrico. El accionar de este ventilador permite inducir el flujo de gases a través del horno y asegurar que no existirán fugas de gases con contenido de SO2 al entorno.
El proceso de fusión ocurre a temperatura de 1.200 ºC, en un sistema fundido, con suspensión de partículas sólidas en el baño, correspondiente a compuestos de alto punto de fusión (léase sílice, magnetita, entre otros).
La reacción de producción de mata y escoria podemos representarla por:
Concentrado + Fundentes + Energía ------> Mata + Escoria + Gas (5)
Donde:
Mata: Cu2S, FeS, fundamentalmente.
Escoria: FeO, Fe3O4, SiO2, Al2O3, CaO, MgO, Cu2O, otros
Gas: O2, SO2, N2, CO, CO2, H2, H2O, otros.

Alimentación de concentrados al horno de fusión

Una vez alcanzado el nivel de humedad requerido, el concentrado es descargado por gravedad desde los secadores y transportado en forma neumática a tolvas intermedias. En ellas se encuentran, simultáneamente, los polvos recuperados de diferentes partes del proceso de fusión y el concentrado seco proveniente de los secadores. Junto a cada tolva intermedia hay una tolva de almacenamiento de cuarzo fino; el cuarzo es requerido como fundente para la formación de escoria producida por las unidades de conversión del eje alta ley (FCF) y, en menor cantidad, escoria proveniente de la refinación anódica y materiales recuperados de limpieza de canales, ductos y otros.
El concentrado seco, en conjunto con el cuarzo y en la dosificación adecuada, se extrae por un círculo neumático operado en fase densa que lo conduce por una cañería hasta el quemador del Horno Flash o de fusión inmediata, de tecnología Outokumpu.

Tostación parcial de concentrados

La tostación consiste en la oxidación parcial de los sulfuros del concentrado y en la eliminación parcial del azufre de éste como SO2 y ocurre según reacciones sólido-gaseosas, a temperaturas de 500 a 800 ºC, dependiendo de los productos que se desea obtener.
La fase gaseosa contiene normalmente O2 y SO2 en la alimentación y productos y cantidades menores de gases SO3 y SO2, dependiendo de las reacciones de oxidación.

El Secado

El concentrado húmedo proveniente del domo de mezcla, es almacenado en tolvas desde donde ingresa a las líneas de secado de cada equipo de fusión que cuenta con secadores calefaccionados con vapor de agua En esta etapa la humedad original del concentrado (entre 6% y 8%) se reduce a niveles que oscilan entre 0,2% y 0,3%.
El concentrado va reduciendo sus niveles de humedad a medida que avanza dentro un tambor metálico. En el interior circula vapor a temperatura de 180ºC, por un serpentín que permite la transferencia de calor por radiación y convección. El calor requerido para el secado es suministrado por vapor saturado, a una presión de 20 bares, proveniente desde calderas de recuperación de calor de los gases generados en el proceso de fundición y que se encuentran asociadas a los respectivos hornos de fusión y conversión.
Los vahos producidos por el proceso de secado, compuestos por aire de purga (vapor de agua desprendido del concentrado y polvo arrastrado), pasan a un filtro de mangas donde se recuperan las partículas en suspensión, para ser dirigidas a las tolvas de almacenamiento de concentrado seco. Los vahos limpios son descargados a la atmósfera. El vapor condensado producto del proceso es conducido por cañerías a un estanque recuperador de condesados para su reutilización.
Debido a que la temperatura de operación del secador es de 180 ºC, no se generará emisión de SO2 al ambiente, ya que el azufre solo reacciona con el oxígeno a una temperatura superior a los 300 ºC. En algunos casos puntuales, el grado de humedad del concentrado a tratar se convierte en un parámetro importante, como en la alimentación a los procesos de fusión flash, en los que el concentrado es transportado suspendido en aire enriquecido o en oxígeno. Así, los procedimientos Outokumpu e INCO consideran una etapa de secado de concentrado en un secador rotatorio previo a su tratamiento. Outokumpu y Convertidor Teniente en particular, necesitan grados de humedad inferiores al 0,2%.

Flotacion

La flotación es un proceso físico-químico que permite la separación de los minerales sulfurados de cobre y otros elementos como el molibdeno, del resto de los minerales que componen la mayor parte de la roca original.

  • La pulpa proveniente de la molienda, que tiene ya incorporados los reactivos necesarios para la flotación, se introduce en unos receptáculos como piscinas, llamados celdas de flotación. Desde el fondo de las celdas, se hace burbujear aire y se mantiene la mezcla en constante agitación para que el proceso sea intensivo.

    Los reactivos que se incorporan en la molienda tienen diferentes naturalezas y cumplen diferentes funciones:

    Reactivos espumantes
    tienen como objetivo el producir burbujas resistentes.

    Reactivos colectores
    tienen la misión de impregnar las partículas de sulfuros de cobre y de molibdeno para que se separen del agua (hidrófobo) y se peguen en las burbujas.

    Reactivos depresantes
    destinados a provocar el efecto inverso al de los reactivos colectores para evitar la recolección de otros minerales como la pirita, que es un sulfuro que no tiene cobre.

    Otros aditivos
    como la cal sirven para estabilizar la acidez de la mezcla en un valor de PH determinado, proporcionando el ambiente adecuado para que ocurra todo el proceso de flotación.
Las burbujas arrastran consigo los minerales sulfurados hacia la superficie, donde rebasan por el borde de la celda hacia canaletas que las conducen hacia estanques especiales, desde donde esta pulpa es enviada a la siguiente etapa.

El proceso es reiterado en varios ciclos, de manera que cada ciclo va produciendo un producto cada vez más concentrado. En uno de estos ciclos, se realiza un proceso especial de flotación para recuperar el molibdeno, cuyo concentrado alcanza una ley de 49% de molibdenita (MoS2).
Luego de varios ciclos en que las burbujas rebasan el borde de las celdas, se obtiene el concentrado, en el cual el contenido de cobre ha sido aumentado desde valores del orden del 1% (originales en la roca) a un valor de hasta 31% de cobre total.

El concentrado final es secado mediante filtros y llevado al proceso de fundición.


Molienda

Mediante la molienda, se continúa reduciendo el tamaño de las partículas que componen el mineral, para obtener una granulometría máxima de 180 micrones (0,18 mm), la que permite finalmente la liberación de la mayor parte de los minerales de cobre en forma de partículas individuales. 

¿En qué consiste el proceso de molienda?

El proceso de la molienda se realiza utilizando grandes equipos giratorios o molinos de forma cilíndrica, en dos formas diferentes: molienda convencional o molienda SAG. En esta etapa, al material mineralizado se le agregan agua en cantidades suficientes para formar un fluido lechoso y los reactivos necesarios para realizar el proceso siguiente que es la flotación.

Molienda convencional 

La molienda convencional se realiza en dos etapas, utilizando molino de barras y molino de bolas, respectivamente, aunque en las plantas modernas sólo se utiliza el segundo. En ambos molinos el mineral se mezcla con agua para lograr una molienda homogénea y eficiente. La pulpa obtenida en la molienda es llevada a la etapa siguiente que es la flotación. 

 Molienda de barras

Este equipo tiene en su interior barras de acero de 3,5 pulgadas de diámetro que son los elementos de molienda. El molino gira con el material proveniente del chancador terciario, que llega continuamente por una correa transportadora. El material se va moliendo por la acción del movimiento de las barras que se encuentran libres y que caen sobre el mineral. El mineral molido continúa el proceso, pasando en línea al molino de bolas.

Molienda de bolas


Este molino, cuyas dimensiones son 16 x 24 pies (es decir, 4,9 m de diámetro por 7,3 m de ancho), está ocupado en un 35% de su capacidad por bolas de acero de 3,5 pulgadas de diámetro, las cuales son los elementos de molienda. En un proceso de aproximadamente 20 minutos, el 80% del mineral es reducido a un tamaño máximo de 180 micrones.

Molienda SAG 

La instalación de un molino SAG constituye una innovación reciente en algunas plantas. Los molinos SAG (SemiAutóGenos) son equipos de mayores dimensiones (36 x 15 pies, es decir, 11,0 m de diámetro por 4,6 m de ancho) y más eficientes que los anteriores. Gracias a su gran capacidad y eficiencia, acortan el proceso de chancado y molienda.

¿En qué consiste la molienda SAG?


El mineral se recibe directamente desde el chancador primario (no del terciario como en la molienda convencional) con un tamaño cercano a 8 pulgadas (20 cm, aproximadamente) y se mezcla con agua y cal. Este material es reducido gracias a la acción del mismo material mineralizado presente en partículas de variados tamaños (de ahí su nombre de molienda semi autógena) y por la acción de numerosas bolas de acero, de 5 pulgadas de diámetro, que ocupan el 12% de su capacidad. Dados el tamaño y la forma del molino, estas bolas son lanzadas en caída libre cuando el molino gira, logrando un efecto conjunto de chancado y molienda más efectivo y con menor consumo de energía por lo que, al utilizar este equipo, no se requieren las etapas de chancado secundario ni terciario.

Chancado

Los chancadores son equipos eléctricos de grandes dimensiones. En estos equipos, los elementos que trituran la roca mediante movimientos vibratorios están construidos de una aleación especial de acero de alta resistencia. Los chancadores son alimentados por la parte superior y descargan el mineral chancado por su parte inferior a través de una abertura graduada de acuerdo al diámetro requerido. Todo el manejo del mineral en la planta se realiza mediante correas transportadoras, desde la alimentación proveniente de la mina hasta la entrega del mineral chancado a la etapa siguiente. 

El chancador primario es el de mayor tamaño (54' x 74', es decir 16,5 m de ancho por 22,5 m de alto). En algunas plantas de operaciones, este chancador se ubica en el interior de la mina (cerca de donde se extrae el mineral) como es el caso de la División Andina.


El mineral proveniente de la mina presenta una granulometría variada, desde partículas de menos de 1 mm hasta fragmentos mayores que 1 metro de diámetro, por lo que el objetivo del chancado es reducir el tamaño de los fragmentos mayores hasta obtener un tamaño uniforme máximo de ½ pulgada (1,27 cm). 


Para lograr el tamaño deseado de ½ pulgada, en el proceso del chancado se utiliza la combinación de tres equipos en línea que van reduciendo el tamaño de los fragmentos en etapas, las que se conocen como etapa primaria, etapa secundaria y terciaria.
  •  En la etapa primaria, el chancador primario reduce el tamaño máximo de los fragmentos a 8 pulgadas de diámetro.
     En la etapa secundaria, el tamaño del material se reduce a 3 pulgadas.
     En la etapa terciaria, el material mineralizado logra llegar finalmente a ½ pulgada


Operaciones Metalurgicas

Los metales se extraen de dos formas de la corteza terrestre: la minería a cielo abierto y la minería subterránea, donde la minería a cielo abierto es usada cuando los depósitos están a 100 o 133 metros de la superficie de la tierra  y por lo general siempre se utiliza la minería a cielo abierto ya que es más rentable.

La minería a cielo abierto puede ser más rentable pero puede ser más contaminante, consecuencias de la minería a cielo abierto:

Por cada gramo de oro producido, queda una tonelada de tierra con cianuro, arsénico, ácido sulfúrico, plomo y otros metales pesados, que por siglos contaminará el aire y los mantos de agua.

Donde antes había ecosistemas complejos quedan cráteres enormes donde la flora y fauna no se regeneran.

La economía local, lejos de mejorar,  es afectada. Se pierden tierras para cultivo y la presencia de minas ahuyenta al turismo.



Se consumen enormes cantidades de agua: la Minera San Xavier, en San Luis Potosí, zona desértica, utiliza 32 millones de litros al día. Aunque a veces se recicla una parte, no hay ninguna garantía de que esa agua sea segura.



Tipos de Mina

Minas a cielo abierto: Las minas a cielo abierto, o minas a tajo abierto, son aquellas cuyo proceso extractivo se realiza en la superficie del terreno, y con maquinarias mineras de gran tamaño. Como ejemplos de este tipo de minas se pueden citar a Chuquicamata, La Escondida y Pascua Lama en 
Chile.

Minería subterránea: es aquella extracción de recursos mineros a través de excavaciones (pozos,túneles,galerías).
La explotación de un yacimiento o cantera  mediante minería subterránea se realiza cuando su extracción a cielo abierto no es posible por motivos económicos, sociales o ambientales.

Tipos de minería subterránea:

Las que se encuentran por encima del terreno se denominan minas de montaña, La ventaja de este tipo de mina es su acceso ya que es más fácil , y gracias a eso se pueden hacer galerías horizontales excavadas en las laderas del valle. Así mismo, el desagüe de las mismas se realiza por gravedad, a través de las labores de acceso.

Las que se encuentran por debajo del nivel del fondo del valle, casi siempre en este tipo de mina es necesario excavar pozos (verticales o inclinados), labores de acceso que desciendan al nivel del yacimiento. En este caso el desagüe tiene que realizarse mediante bombas que impulsen el agua desde del interior de la mina a la superficie

La minería subterránea puede ser de roca dura o blanda

En las minas de roca dura, la extracción se realiza mediante perforación y voladura. Primero se realizan orificios con perforadoras de aire comprimido o hidráulicas. Luego se insertan barrenos en los orificios y se provoca una explosión para fracturar la roca. 

Las minas de roca blanda, como el carbón, no necesitan el empleo de explosivos para la extracción. Estas rocas pueden cortarse con las herramientas que proporciona la tecnología moderna. También son rocas blandas la sal, la potasa, la bauxita.



Objetivo de la Metalurgia


Chile es reconocido como un país minero, tanto por la importancia principal de la participación de la minería en el desarrollo económico del país, como porque constituye una actividad ancestral, que ha llegado a crear su propia cultura y que se desarrolla en gran parte del territorio nacional, aunque predominantemente en la zona Norte de nuestro país. La importancia alcanzada y el progreso consignado por la minería chilena se basa fundamentalmente en:
- La calidad de sus recursos, la magnitud de sus reservas y su ubicación     
- El marco legal favorable a la certeza, estabilidad y seguridad  de la actividad minera
- Las atractivas oportunidades para la inversión extranjera
- La capacidad de gestión minera, recursos humanos idóneos para la operación y servicios
- La infraestructura de energía y vías de comunicación terrestres y marítimas
La situación económica - social de Chile se caracteriza por haber logrado: un crecimiento económico sostenido, el que se ha atenuado por la desfavorable situación económica internacional. El principal motor de desarrollo ha sido el comercio exterior, un significativo ingreso de inversión extranjera en diversas actividades productivas y un bajo nivel de inflación.
El sector minero es considerablemente más importante en la Segunda Región que a nivel del país, ya que mientras éste representa menos del 10% de la producción total de la nación, en la Segunda Región da cuenta de más del 60% del producto regional. En este contexto, el trabajo evalúa el impacto del sector minero sobre la Segunda Región de Antofagasta. Para ello se utiliza una metodología basada en una matriz de insumo producto, cálculo de multiplicadores y de encadenamientos productivos.

¿Que es la metalurgia?







La metalurgia es la técnica de la obtención y tratamiento de los metales a partir de minerales metálicos. También estudia la producción de aleaciones, el control de calidad de los procesos.







¿QUE PROCESOS TIENE LA METALURGIA?



  • Explotación de las minas
  • Concentración de la mena y su preparación para el tratamiento posterior
  • Reducción del mineral para obtener el metal libre, es la etapa química de la metalurgia
  • Refinación o purificación del metal, en la que se le da el acabado final y propiedades especificas.