lunes, 5 de diciembre de 2016

Refinación y moldeo de ánodos

El cobre blíster obtenido de la etapa de conversión aún contiene impurezas y materiales valiosos tales como plata, oro, arsénico, antimonio, bismuto y hierro, por lo que debe ser refinado en los hornos anódicos. La operación de los hornos de refinación es cíclica (batch) y está constituida por las siguientes etapas: Llenado, Oxidación, Escoriado, Reducción y Vaciado.
Cada horno opera de forma secuencial, de acuerdo con las cinco etapas mencionadas. Completada la carga del horno, se inicia la etapa de oxidación, que permite remover el sulfuro contenido en el blíster hasta un nivel de 50 ppm. Para tal efecto se inyecta al baño fundido aire enriquecido con oxígeno. Adicionalmente se renuevan otras impurezas contenidas en el cobre blíster, inyectándose vía toberas, si es necesario, pequeñas cantidades de cal, que permiten la formación de una escoria que se descarta por sangrado y posteriormente es recirculado
Una vez limpio el cobre, se inicia la etapa de reducción del nivel de oxígeno presente en el baño fundido, mediante la inyección de gas natural fraccionado con vapor de aire. Así se obtiene cobre anódico con un contenido de cobre de un 99,6%.
El cobre anódico se extrae del horno de ánodos por una canaleta cubierta, a la rueda de moldeo que va girando, produciéndose la soldificación del ánodo fundido por contacto con el aire ambiente.
Un equipo especialmente diseñado, toma automáticamente los ánodos solidificándolos y los deposita en estanques longitudinales de enfriamiento con agua. Desde los estanques, los ánodos son sacados por un montacargas y depositados en un área dedicada.

Limpieza de escorias

La escoria fundida producida por el HF es alimentada al HELE por la gravedad a través de una canaleta cerrada y ventilada. La reducción del contenido de Fe3O44 permite mejorar las propiedades fisicoquímicas de la escoria optimizándose la separación y, en consecuencia, la sedimentación de las partículas de cobre. Así se logra la separación de las dos fases fundidas presentes: metal blanco con un contenido de cobre de 70% y escoria descartable con un contenido de cobre de alrededor de 0.70%. Los gases generados en el HELE son captados y conducidos a un incinerador que permite asegurar la quema total del carbón remanente no utilizado. Posteriormente, son mezclados con aire del sistema de ventilación del horno y con los gases secundarios de proceso. Esta mezcla es enfriada y conducida a un sistema de limpieza que permite la recuperación de material particulado. Los gases además de limpiados son neutralizados previo a su emisión a la atmósfera.


Fusión de concentrados

El objetivo de esta etapa es formar una fase de sulfuros líquidos, compuesta principalmente por calcosina (Cu2S), covelina (CuS), calcopirita (CuFeS2), pirita (FeS2) y bornita (Cu5FeS4). En lo posible, debe contener todo el cobre alimentado, y otra fase oxidada líquida adherida a la anterior, llamada escoria, ojalá exenta de cobre, compuesta principalmente de silicatos de hierro. Los silicatos de hierro y los fundentes forman la escoria. La mata de cobre contiene sulfuros de cobre y hierro, algunos metales preciosos y otros elementos a nivel de trazas. La escoria, pobre en el metal, es caracterizada y descartada directamente o sometida a una etapa adicional de recuperación del metal, si su contenido es alto. La mata, en cambio, pasa a una etapa posterior de conversión por oxidación.
Los concentrados sulfurados de cobre son básicamente combinaciones, en proporciones variables, de sulfuros de hierro y cobre mezclados con ganga silícea ácido o básica. Las reacciones que tienen lugar en el Horno de Fusión (HF) transcurren entre estos constituyentes del concentrado y los fundentes, y corresponden principalmente a la reducción de los óxidos de cobre por el sulfuro cuproso y a la sulfuración de los óxidos de cobre por el sulfuro ferroso. Todo el sulfuro de cobre se descompone de acuerdo con las siguientes reacciones:




La tecnología HF corresponde a un proceso de fusión-conversión continua de concentrados, desarrollado por Outokumpu, que aprovecha el calor generado en las reacciones del oxígeno presente en el aire del proceso, con los sulfuros de hierro contenidos en el concentrado alimentado al reactor. Dependiendo principalmente de las características mineralógicas o químicas del concentrado, de los flujos y enriquecimientos en oxígeno del aire soplado, se generarán importantes cantidades de calor en el reactor, suficientes para tener un proceso totalmente autógeno, donde se funden además, materiales fríos de recirculación con cobre o carga fría, generada en el proceso productivo y utilizada para regular la temperatura en el horno.
Los productos generados en este proceso son una fase rica en cobre, conocida como eje de alta ley, con un 62%-70% de cobre, una escoria con un 1%-2% de cobre y 8%-12% de Fe3O4, y una corriente continua de gases con un 30%-35% de SO2 en la salida del horno. Concentración que dependerá principalmente del enriquecimiento en oxígeno del aire de proceso.
La escoria generada en el HF es evacuada por un pasaje de sangría ubicado en el extremo opuesto al punto de extracción del metal blanco, transferida por gravedad a través de una canaleta inclinada, cerrada, refrigerada y recubierta por material refractario, a un Horno Eléctrico de Limpieza de Escoria (en adelante HELE) para recuperar su contenido de cobre. Ambas canaletas, tanto la que conduce la escoria al HELE, como la que conduce el metal blanco a la etapa de granallado, se encuentran totalmente confinadas de tal forma que los gases y vahos emanados por la extracción o sangrado de los productos (metal blanco y escoria), sean captados y conducidos mediante ventilación a un sistema de limpieza de gases secundarios, donde un filtro de mangas recupera las partículas en suspensión (las que luego son recirculadas como carga fría al HF). Luego, los gases y vahos son neutralizados y emitidos a la atmósfera.
Respecto de los gases metalúrgicos primarios producidos en el proceso (ricos en SO2), éstos salen del HF por una torre refrigerada y pasan a una caldera donde se enfrían hasta alcanzar una temperatura de 350 ºC. Transfieren su calor por radiación y convección a los tubos de la caldera para producir vapor saturado de 60 bar de presión, que se utiliza en múltiples aplicaciones como un medio calefactor en procesos de intercambio de calor. Los gases primarios, limpios en partículas y ricos en SO22, son forzados por un ventilador de tiro inducido y conducido a la Planta de Limpieza de Gases y el dióxido de azufre es utilizado en la producción de ácido sulfúrico. El accionar de este ventilador permite inducir el flujo de gases a través del horno y asegurar que no existirán fugas de gases con contenido de SO2 al entorno.
El proceso de fusión ocurre a temperatura de 1.200 ºC, en un sistema fundido, con suspensión de partículas sólidas en el baño, correspondiente a compuestos de alto punto de fusión (léase sílice, magnetita, entre otros).
La reacción de producción de mata y escoria podemos representarla por:
Concentrado + Fundentes + Energía ------> Mata + Escoria + Gas (5)
Donde:
Mata: Cu2S, FeS, fundamentalmente.
Escoria: FeO, Fe3O4, SiO2, Al2O3, CaO, MgO, Cu2O, otros
Gas: O2, SO2, N2, CO, CO2, H2, H2O, otros.

Alimentación de concentrados al horno de fusión

Una vez alcanzado el nivel de humedad requerido, el concentrado es descargado por gravedad desde los secadores y transportado en forma neumática a tolvas intermedias. En ellas se encuentran, simultáneamente, los polvos recuperados de diferentes partes del proceso de fusión y el concentrado seco proveniente de los secadores. Junto a cada tolva intermedia hay una tolva de almacenamiento de cuarzo fino; el cuarzo es requerido como fundente para la formación de escoria producida por las unidades de conversión del eje alta ley (FCF) y, en menor cantidad, escoria proveniente de la refinación anódica y materiales recuperados de limpieza de canales, ductos y otros.
El concentrado seco, en conjunto con el cuarzo y en la dosificación adecuada, se extrae por un círculo neumático operado en fase densa que lo conduce por una cañería hasta el quemador del Horno Flash o de fusión inmediata, de tecnología Outokumpu.

Tostación parcial de concentrados

La tostación consiste en la oxidación parcial de los sulfuros del concentrado y en la eliminación parcial del azufre de éste como SO2 y ocurre según reacciones sólido-gaseosas, a temperaturas de 500 a 800 ºC, dependiendo de los productos que se desea obtener.
La fase gaseosa contiene normalmente O2 y SO2 en la alimentación y productos y cantidades menores de gases SO3 y SO2, dependiendo de las reacciones de oxidación.

El Secado

El concentrado húmedo proveniente del domo de mezcla, es almacenado en tolvas desde donde ingresa a las líneas de secado de cada equipo de fusión que cuenta con secadores calefaccionados con vapor de agua En esta etapa la humedad original del concentrado (entre 6% y 8%) se reduce a niveles que oscilan entre 0,2% y 0,3%.
El concentrado va reduciendo sus niveles de humedad a medida que avanza dentro un tambor metálico. En el interior circula vapor a temperatura de 180ºC, por un serpentín que permite la transferencia de calor por radiación y convección. El calor requerido para el secado es suministrado por vapor saturado, a una presión de 20 bares, proveniente desde calderas de recuperación de calor de los gases generados en el proceso de fundición y que se encuentran asociadas a los respectivos hornos de fusión y conversión.
Los vahos producidos por el proceso de secado, compuestos por aire de purga (vapor de agua desprendido del concentrado y polvo arrastrado), pasan a un filtro de mangas donde se recuperan las partículas en suspensión, para ser dirigidas a las tolvas de almacenamiento de concentrado seco. Los vahos limpios son descargados a la atmósfera. El vapor condensado producto del proceso es conducido por cañerías a un estanque recuperador de condesados para su reutilización.
Debido a que la temperatura de operación del secador es de 180 ºC, no se generará emisión de SO2 al ambiente, ya que el azufre solo reacciona con el oxígeno a una temperatura superior a los 300 ºC. En algunos casos puntuales, el grado de humedad del concentrado a tratar se convierte en un parámetro importante, como en la alimentación a los procesos de fusión flash, en los que el concentrado es transportado suspendido en aire enriquecido o en oxígeno. Así, los procedimientos Outokumpu e INCO consideran una etapa de secado de concentrado en un secador rotatorio previo a su tratamiento. Outokumpu y Convertidor Teniente en particular, necesitan grados de humedad inferiores al 0,2%.

Flotacion

La flotación es un proceso físico-químico que permite la separación de los minerales sulfurados de cobre y otros elementos como el molibdeno, del resto de los minerales que componen la mayor parte de la roca original.

  • La pulpa proveniente de la molienda, que tiene ya incorporados los reactivos necesarios para la flotación, se introduce en unos receptáculos como piscinas, llamados celdas de flotación. Desde el fondo de las celdas, se hace burbujear aire y se mantiene la mezcla en constante agitación para que el proceso sea intensivo.

    Los reactivos que se incorporan en la molienda tienen diferentes naturalezas y cumplen diferentes funciones:

    Reactivos espumantes
    tienen como objetivo el producir burbujas resistentes.

    Reactivos colectores
    tienen la misión de impregnar las partículas de sulfuros de cobre y de molibdeno para que se separen del agua (hidrófobo) y se peguen en las burbujas.

    Reactivos depresantes
    destinados a provocar el efecto inverso al de los reactivos colectores para evitar la recolección de otros minerales como la pirita, que es un sulfuro que no tiene cobre.

    Otros aditivos
    como la cal sirven para estabilizar la acidez de la mezcla en un valor de PH determinado, proporcionando el ambiente adecuado para que ocurra todo el proceso de flotación.
Las burbujas arrastran consigo los minerales sulfurados hacia la superficie, donde rebasan por el borde de la celda hacia canaletas que las conducen hacia estanques especiales, desde donde esta pulpa es enviada a la siguiente etapa.

El proceso es reiterado en varios ciclos, de manera que cada ciclo va produciendo un producto cada vez más concentrado. En uno de estos ciclos, se realiza un proceso especial de flotación para recuperar el molibdeno, cuyo concentrado alcanza una ley de 49% de molibdenita (MoS2).
Luego de varios ciclos en que las burbujas rebasan el borde de las celdas, se obtiene el concentrado, en el cual el contenido de cobre ha sido aumentado desde valores del orden del 1% (originales en la roca) a un valor de hasta 31% de cobre total.

El concentrado final es secado mediante filtros y llevado al proceso de fundición.